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Summary. We consider the problem of simultaneous variable selection and

estimation in partially linear models with a divergent number of covariates in

the linear part, under the assumption that the vector of regression coefficients is

sparse. We apply the SCAD penalty to achieve sparsity in the linear part and use

polynomial splines to estimate the nonparametric component. Under reasonable

conditions it is shown that consistency in terms of variable selection and estimation

can be achieved simultaneously for the linear and nonparametric components.

Furthermore, the SCAD-penalized estimators of the nonzero coefficients are shown to

be asymptotically normal with the same means and covariances that they would have

if the zero coefficients were known in advance. Simulation studies are conducted to

evaluate the finite sample behavior of the SCAD-penalized estimators.

Key Words and phrases. Asymptotic normality, high-dimensional data, oracle

property, penalized estimation, semiparametric models, variable selection, .
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1. Introduction. Consider a partially linear model (PLM)

Y = X′β + g(T ) + ε,

where β is a p × 1 vector of regression coefficients associated with X, and g is an unknown

function of T . In this model, the mean response is linearly related to X, while its relation with

T is not specified up to any finite number of parameters. This model combines the flexibility of

nonparametric regression and parsimony of linear regression. When the relation between Y and

X is of main interest and can be approximated by a linear function, it offers more interpretability

than a purely nonparametric model.

We consider the problem of simultaneous variable selection and estimation in the PLM when

p is large in the sense that p → ∞ as the sample size n → ∞. For finite-dimensional β,
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several approaches have been proposed to estimate β and g. Examples include the partially

spline estimator [Wahba (1984), Engle, Granger, Rice and Weiss (1986) and Heckman (1986)]

and the partially residual estimator [Robinson (1988), Speckman (1988) and Chen (1988)]. A

detailed treatment of the PLM can be found in Härdel, Liang and Gao (2000). Under appropriate

assumptions about the smoothness of g and the structure of X, these estimators of β were shown

to be
√

n-consistent and asymptotically normal. It was also shown that the estimators of g can

converge at the optimal rate in the purely nonparametric regression determined in Stone (1980,

1982). In these studies, the dimension of the covariate vector X was fixed and the problem of

variable selection in X via penalization was not considered. The PLM is a basic and one of

the most studied semiparametric models. In addition to the work on the PLM, there has also

been extensive research on efficient estimation in a large class of semiparametric models, see for

example, Bickel, Klaassen, Ritov and Wellner (1998) and the references cited therein. However,

the results for the PLM with a finite-dimensional β and those for the semiparametric models in

general are not applicable to the PLM with a divergent number of covairates. Indeed, it appears

that there is no systematic theoretical investigation of estimation in semiparametric models with a

high-dimensional parametric component.

We are particularly interested in β when it is sparse, in the sense that many of its elements are

zero. Our work is motivated from biomedical studies that investigate the relationship between

a phenotype of interest and genomic measurements such as microarray data. In many such

studies, in addition to genomic measurements, other types of measurements such as clinical or

environmental covariates are also available. To obtain unbiased estimates of genomic effects, it

is necessary to take into account these covariates. Assuming a sparse model is often reasonable

with genomic data. This is because although the total number of measurements can be large, the

number of important ones is usually relatively small. In these problems, selection of important

covariates is often one of the most important goals in the analysis.

We use the SCAD method to achieve simultaneous consistent variable selection and estimation
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of β. The SCAD method is proposed by Fan and Li (2001) in a general parametric framework for

variable selection and efficient estimation. This method uses a specially designed penalty function,

the smoothly clipped absolute deviation (hence the name SCAD). We estimate the nonparametric

component g using the partial residual method with the B-spline bases. The resulting estimator of

β maintains the oracle property of the SCAD-penalized estimators in parametric settings. Here

the oracle property means that the estimator can correctly select the nonzero coefficients with

probability converging to one and that the estimators of the nonzero coefficients are asymptotically

normal with the same means and covariances that they would have if the zero coefficients were

known in advance. Therefore, an oracle estimator is asymptotically as efficient as the ideal

estimator assisted by an oracle who knows which coefficients are nonzero. For the nonparametric

component, convergence of the estimator of g in the SCAD-penalized partially linear regression

still reaches the optimal global rate.

There have been several investigations on asymptotic properties of penalized estimation in

parametric models. Knight and Fu (2000) studied the asymptotic distributions of bridge estimators

when the number of covariates is fixed. Fan and Li (2001) studied asymptotic properties of SCAD

penalized likelihood methods when the number of parameters is finite. Fan and Peng (2004)

considered the same problem when the number of parameters diverges. Under certain regularity

conditions, they showed that there exist local maximizers of the penalized likelihood that have an

oracle property. Huang, Horowitz and Ma (2006) studied the bridge estimators with a divergent

number of covariates in a linear regression model. They showed that the bridge estimators have

an oracle property under appropriate conditions if the bridge index is strictly between 0 and 1.

Several earlier studies have investigated the properties of regression estimators with a divergent

number of covariates. See, for example, Huber (1981) and Portnoy (1984, 1985). Portnoy proved

consistency and asymptotic normality of a class of M-estimators of regression parameters under

appropriate conditions. However, he did not consider penalized regression or selection of variables

in sparse models.
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The rest of this article is organized as follows. In Section 2, we define the SCAD-penalized

estimator (β̂n, ĝn) in the PLM, abbreviated as SCAD-PLM estimator hereafter. The main results

for the SCAD-PLM estimator are given in Section 3, including the consistency and oracle property

of β̂n as well as the rate of convergence of ĝn. Section 4 is describes an algorithm for computing

the SCAD-PLM estimator and the criterion to choose the penalty parameter. Section 5 offers

simulation studies that illustrate the finite sample bevavior of this estimator. Some concluding

remarks are given in Section 6. The proofs are relegated to the Appendix.

2. Penalized estimation in PLM with the SCAD penalty. To make it explicit that the covariates

and regression coefficients depend on n, we write the PLM

Yi = X
(n)′
i β(n) + g(Ti) + εi, i = 1, . . . , n,

where (X
(n)
i , Ti, Yi) are independent and identically distributed as (X(n), T, Y ) and εi is

independent of (X
(n)
i , Ti) with mean 0 and variance σ2. We assume that T takes values in a

compact interval, and for simplicity, we assume this interval to be [0, 1]. Let Y = (Y1, . . . , Yn)′

and let X(n) = (Xij, 1 ≤ i ≤ n, 1 ≤ j ≤ pn) be the n× pn design matrix associated with β(n). In

sparse models, the pn covariates can be classified into two categories: the important ones whose

corresponding coefficients are nonzero and the trivial ones that actually are not present in the

underlying model. For convenience of notation, we write

β(n) = (β
(n)′
1 , β

(n)′
2 )′, (1)

where β
(n)′
1 = (β

(n)
1 , . . . , β

(n)
kn

) and β
(n)′
2 = (0, . . . , 0). Here kn(≤ pn) is the number of nontrivial

covariates. Let mn = pn − kn be the number of zero coefficients.

We use the polynomial splines to approximate g. For a positive integer Mn, let ∆n = {ξnν}Mn
ν=1

be a partition of [0, 1] into Mn + 1 subintervals Inν = [ξnν , ξn,ν+1) : ν = 0, . . . , Mn − 1 and

InMn = [ξnMn , 1]. Here ξn0 = 0 and ξn,Mn+1 = 1. Denote the largest mesh size of ∆n,

max0≤ν≤Mn{ξn,ν+1−ξnν}, by ∆n. Throughout the article we assume ∆n = O(M−1
n ). Let Sm(∆n)

5



be the space of polynomial splines of order m with simple knots at the points ξn1, . . . , ξnMn . This

space consists of all functions s with these two properties:

(i) Restricted to any interval Inν(0 ≤ ν ≤ Mn), s is a polynomial of order m;

(ii) If m ≥ 2, s is m− 2 times continuously differentiable on [0, 1].

According to Corollary 4.10 in Schumaker (1981), there is a local basis {Bnw, 1 ≤ w ≤ qn} for

Sm(∆n), where qn = Mn + m is the dimension of Sm(∆n). Let

Z(t; ∆n)′ = (Bn1(t), . . . , Bnqn(t))

and Z(n) be the n × qn matrix whose ith row is Z(Ti; ∆n)′. Any s ∈ Sm(∆n) can be written

s(t) = Z(t; ∆n)′a(n) for a qn × 1 vector a(n). We try to find the s in Sm(∆n) that is close to g.

Under reasonable smoothness conditions, g can be well approximated by elements in S. Thus the

problem of estimating g becomes that of estimating a(n).

Given a > 2 and λ > 0, the SCAD penalty at θ is

pλ(θ; a) =





λ|θ| , |θ| ≤ λ,

−(θ2 − 2aλ|θ|+ λ2)/[2(a− 1)], λ < |θ| ≤ aλ,

(a + 1)λ2/2 , |θ| > aλ.

More insight into it can be gain through its first derivative:

p′λ(θ; a) =





sgn(θ)λ , |θ| ≤ λ,

sgn(θ)(aλ− |θ|)/(a− 1), λ < |θ| ≤ aλ,

0 , |θ| > aλ.

The SCAD penalty is continuously differentiable on (−∞, 0) ∪ (0,∞), but singular at 0. Its

derivative vanishes outside [−aλ, aλ]. As a consequence, SCAD penalized regression can produce

sparse solutions and unbiased estimates for large coefficients. More details of the penalty can be

found in Fan and Li (2001).
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The penalized least squares objective function for estimating β(n) and a(n) with the SCAD

penalty is

Qn(b(n), a(n); λn, a, ∆n,m) = ‖Y − X(n)b(n) − Z(n)a(n)‖2 + n

pn∑
j=1

pλn(b
(n)
j ; a). (2)

Let

(β̂
(n)

n , α̂(n)
n ) = arg min Qn(b(n), a(n); λn, a, ∆n,m).

The SCAD-PLM estimators of β and g are β̂n and ĝn(t) ≡ Z(t; ∆n)′α̂(n)
n , respectively.

The polynomial splines were also used by Huang (1999) in the partially linear Cox models.

Some computational conveniences were also discussed there. We limit our search for the estimate

of g to the space of polynomial splines of order m instead of the larger space of piecewise

polynomials of order m, with the goal to find a smooth estimator of g. Unlike the basis pursuit in

nonparametric regression, no penalty is imposed on the estimator of the nonparametric part as our

interest lies in the variable selection with regard to the parametric part.

For any b(n), the a(n) that minimizes Qn necessarily satisfies

Z(n)′Z(n)a(n) = Z(n)′(Y − X(n)′b(n)).

Let PZ = Z(n)(Z(n)′Z(n))−1Z(n)′ be the projection matrix of the column space of Z(n). The profile

objective function of the parametric part becomes

Q̃n(b(n); λn, a, ∆n,m) = ‖(I − P
(n)
Z )(Y − X(n)b(n))‖2 + n

pn∑
j=1

pλn(b
(n)
j ; a). (3)

Then

β̂
(n)

n = arg min Qn(b(n); λn, a, ∆n,m).

Because the profile objective function does not involve a(n) and has an explicit form, it is useful

for both theoretical investigation and computation. We will use it to established the asymptotic

properties of β̂
(n)

n . Computationally, this expression can be used to first obtain β̂
(n)

n . Then â
(n)
n can

be computed using the resulting residuals as the response for the covariate matrix Z(n).
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3. Asymptotic properties of the SCAD-PLM estimator. In this section we state the results

of the asymptotic properties of the SCAD-PLM estimator. First, we define some notations. Let

θ
(n)
j (t) = E[X

(n)
j |T = t] for j = 1, . . . , pn. Let the pn × pn conditional variance-covariance

matrix of (X(n)|T = t) be Σ(n)(t). Let e(n) = X(n) − E
[
X(n)|T ]

. We can write Σ(n)(t) =

Var(e(n)|T = t). Denote the unconditional variance-covariance matrix of e(n) by Ξ(n). We have

Ξ(n) = E[Σ(n)(T )]. We assume the following conditions on the smoothness of g and θ
(n)
j , 1 ≤

j ≤ pn.

Condition 1. There are absolute constants γθ > 0 and Mθ > 0 such that

sup
n≥1

sup
1≤j≤pn

|θ(rθ)
nj (t2)− θ

(rθ)
nj (t1)| ≤ Mθ|t2 − t1|γθ , for 0 ≤ t1, t2 ≤ 1,

and the degree of the polynomial spline m− 1 ≥ rθ. Let sθ = rθ + γθ.

Condition 2. There exists an absolute constant σ4e such that for all n and 1 ≤ j ≤ pn,

E[e
(n)
j

4|T ] ≤ σ4e, almost surely.

Condition 3. There are absolute constants γg > 0 and Mg > 0 such that

|g(rg)(t2)− g(rg)(t1)| ≤ Mg|t2 − t1|γg , for 0 ≤ t1, t2 ≤ 1,

with rg ≤ m− 1. Let sg = rg + γg.

As in nonparametric regression, we allow Mn → ∞ but Mn = o(n). In addition, we assume

that the tuning parameter λn → 0 as n → ∞. This is the assumption adopted in nonconcave

penalized regression (Fan and Peng 2004). For convenience, all the other conditions required for

the conclusions in this section are listed here.

(A1) (a) limn→∞ p2
n/n = 0; (b) limn→∞ p2

nM
2
n/n2 = 0; (c) limn→∞ pn/M

sθ
n = 0.

(A2) The smallest eigenvalue of Ξ(n), denoted by λmin(Ξ
(n)), satisfies

lim inf
n→∞

λmin(Ξ
(n)) = cλ > 0.
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(A3) λn = o(k
−1/2
n ).

(A4) lim inf
n→∞

min1≤j≤kn |β(n)
j | = cβ > 0.

(A5) Let λmax(Ξ
(n)) be the largest eigenvalue of Ξ(n). (a) lim

√
pnλmax(Ξ(n))/(

√
nλn) = 0; (b)

lim
√

pnλmax(Ξ(n))/(M
sg
n λn) = 0.

(A6) Suppose for all t in [0, 1], tr(Σ(n)
11 (t)) ≤ tr(Σ(n)

u,11) and the latter satisfies

lim
√

tr(Σ(n)
u,11)M

−sg
n = 0 and lim tr(Σ(n)

u,11)Mn/n = 0.

(A7) lim
√

nM
−(sg+sθ)
n = 0.

Theorem 1. (Consistency of β̂
(n)

) Under (A1)–(A2),

‖β̂(n) − β(n)‖ = OP (
√

pn/n + M−sg
n +

√
knλn).

Thus under (A1)–(A3),

‖β̂(n) − β(n)‖ P−→ 0.

This theorem establishes the consistency of the SCAD-PLM estimator of the parametric part.

(A1) requires the number of covariates considered not to increase at rates faster than
√

n and

M
1/sθ
n . (A2) is a requirement for model identifiability. It assumes that Ξ(n) is positive definite so

that no random variable of the form
∑pn

j=1 cjX
(n)
j , where cj’s are constants, can be functionally

related to T . When pn increases with n, Ξ(n) needs to be bounded away from any singular matrix.

The assumption about λn, (A3), says that λn should converge to 0 fast enough so that the penalty

would not introduce any bias. The rate at which λn goes to 0 only depends on kn. It is interesting

to note that the smoothness index sg of g and the number of spline bases Mn affects the rate of

convergence of β̂
(n)

by contributing a term M
−sg
n . When pn is bounded and no SCAD penalty is

imposed (λn = 0), the convergence rate is O(n−1/2 + M
−sg
n ), which is consistent with Theorem 2

of Chen (1988).
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Corresponding to the partition in (1), write β̂
(n)

= (β̂
(n)′
1 , β̂

(n)′
2 )′, where β̂

(n)′
1 and β̂

(n)′
2 are

vectors of length kn and mn, respectively. The theorem below shows that all the covariates with

zero coefficients can be detected simultaneously with probability tending to 1, provided that λn

does not converge to 0 too fast.

Theorem 2. (Variable selection in X(n)) Assume all the e
(n)
j ’s support sets are contained in a

compact set in R. Under (A1)–(A5)

lim
n→∞

P (β̂
(n)

2 = 0) = 1.

(A5) puts restriction on the largest eigenvalue of Ξ(n)). In general, λmax(Ξ
(n)) = O(pn), as

can be seen from

λmax(Ξ
(n)) < tr(Ξ(n)) ≤ pn

√
σ4e.

There is the question of whether there exists a λn that satisfies both (A3) and (A5). It can be

checked that, if pn = o(n1/3) there exists λn such that (A3) and (A5) hold. When kn is bounded,

the existence of such λn only requires that pn = o(n1/2). This relaxation also holds for the case

when λmax(Ξ
(n)) is bounded from above.

By Theorem 2, β̂
(n)

2 degenerates at 0mn with probability converging to 1. We now consider

the asymptotic distribution of β̂
(n)

1 . According to the partition of β(n) in (1), write X(n) and Ξ(n)

in the block form:

X(n) =
(
X(n)

1︸︷︷︸
n×kn

X(n)
2︸︷︷︸

n×mn

)
,

Ξ(n) =




kn mn

kn Ξ
(n)
11 Ξ

(n)
12

mn Ξ
(n)
21 Ξ

(n)
22


.

Let An be a non-random ι× kn matrix with full row rank and

Σn = n2An

[
X(n)′

1 (I − PZ)X(n)
1

]−1

Ξ
(n)
11

[
X(n)′

1 (I − PZ)X(n)
1

]−1

A′
n.
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Theorem 3. (Asymptotic distribution of β̂
(n)

) Suppose that all the support sets of e
(n)
j ’s are

contained in a compact set in R, j = 1, . . . , pn. Then under (A1)–(A7),

√
nΣ−1/2

n An(β̂
(n)

1 − β
(n)
1 )

d−→ N(0ι, σ
2Iι). (4)

The asymptotic distribution result can be used to construct asymptotic confidence intervals for

any fixed number of coefficients simultaneously.

In (4), we used the inverse of X(n)′
1 (I − PZ)X(n)

1 and that of Σn. Under assumption (A2),

by Theorem 4.3.1 in Wang and Jia (1993), the smallest eigenvalue of Ξ
(n)
11 is no less than cλ

and bounded away from 0. By Lemma 1 in the Appendix, X(n)′
1 (I − PZ)X(n)

1 is invertible with

probability tending to 1. The invertibility of Σn then follows from the full row rank restriction on

An.

(A6) may appear a little abrupt. It requires
∑kn

j=1 Var(e(n)
j |T = t) to be less than the trace of a

kn×kn matrix Σ
(n)
u,11 as t ranges over [0, 1], which is considerably weaker than the assumption that

Σ
(n)
u,11 − Σ

(n)
11 (t) is a nonnegative definite matrix for any t ∈ [0, 1]. We can also replace tr(Σ(n)

u,11)

by kn in the assumption, since for all t,

kn∑
j=1

Var(e(n)
j |T = t) ≤ kn

√
Ce.

(A7) requires that g and θ
(n)
j be smooth enough. Intuitively, a smooth g makes it easier to estimate

β. The smoothness requirement on θ
(n)
j also makes sense, since this helps to remove effect of T

on X
(n)
j and the estimation of β is based on the relationship

Y − E[Y |T ] = (X− E[X|T ]) β + ε.

We now consider the consistency of ĝn. Suppose that T is an absolutely continuous random

variable on [0, 1] with density fT . We use the L2 distance

‖ĝn − g‖T =

{∫ 1

0

[ĝn(t)− g(t)]2fT (t) dt

}1/2

.
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This is the measure of distance between two functions that were used in Stone (1982, 1985). If

our interest is confined to the estimation of β(n), we should choose large Mn unless computing

comes into consideration. However, too large an Mn would introduce too much variation and is

detrimental to the estimation of g.

Theorem 4. (Rate of convergence of ĝn) Suppose Mn = o(
√

n) and fT (t) is bounded away from

0 and infinity on [0, 1]. Under (A1)–(A5),

‖ĝn − g‖T = OP (kn/
√

n +
√

Mn/n +
√

knM
−sg
n ).

In the special case of bounded kn, Theorem 4 simplifies to the well-known result in

nonparametric regression:

‖ĝn − g‖T = OP (
√

Mn/n + M−sg
n ).

When Mn ∼ n−1/(2sg+1), the convergence rate is optimal. However, the feasibility of such a

choice requires sg > 1/2. To have the asymptotic normality of β̂
(n)

1 hold simultaneously, we

also need sθ > 1/2. In the diverging kn case, the rate of convergence is determined by kn, pn,

Mn, sg and sθ jointly. With appropriate sg, sθ and pn, the rate of convergence can be n−1/2kn +

k
1/(4sg+2)
n n−sg/(2sg+1).

4. Computation. The computation of the SCAD-PLM estimator involves the choice of λn. We

first consider the estimation as well the standard error approximation of the estimator with a given

λn and then describe the generalized cross validation approach to choose appropriate λn in the

PLM.

4.1. Computation of β̂
(n)

and ĝn. The computation of (β̂
(n)

, ĝn) requires the minimization of

(2). The projection approach adopted here converts this problem to the minimization of (3). In

particular, given m and a partition ∆n, a basis of Sm(∆n) is given by (Bn1, . . . , Bnqn). The basis

functions are evaluated at Ti, i = 1, . . . , n and form Zn. In Splus or R, this can be realized with
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the bs function. Regress each columns of X(n) and Y on Zn separately. Denote the residuals by

X̃(n) and Ỹ. The minimization of (3) is now a nonconcave penalized regression problem, with

observations (X̃(n), Ỹ). We also standardize the columns of X̃(n) so the covariates with smaller

variations will not be discriminated against.

Fan and Li (2001) proposed to approximate the nonconcave penalty with a local quadratic

function, to facilitate the use of the Newton-Raphson method. At the kth step, suppose the initial

value of the jth element of the kth step estimator of β(n) is b
(n)
(k),j . The penalty function pλ(bj) for

bj around b
(n)
k,j is approximated by

pλ(|bj|) ≈ pλ(|b(n)
(k),j|) +

p′λ(|b(n)
k,j |)

2|b(n)
(k),j|

(b2
j − b

(n)
(k),j

2
). (5)

An undesirable outcome of this approximation is the estimate of β
(n)
j has to end up being 0 once

it reached 0 in any step.

Hunter and Li (2005) described a minorize-maximize (MM) algorithm to compute the

nonconcave penalized estimator. In this algorithm, the approximation in (5) is improved with

a small perturbation ξ > 0 to handle the non-differentiability at 0. This prevents the estimation

from being trapped at 0. Let

pλ,ξ(|bj|) = pλ(|bj|)− ξ

∫ |bj |

0

p′λ(u)

ξ + u
du.

In the (k + 1)th step, the penalty function pλ(bj) for bj around b
(n)
k,j is approximated by

pλ,ξ(|bj|) ≈ pλ,ξ(|b(n)
(k),j|) +

p′λ(|b(n)
k,j |+)

2(ξ + |b(n)
(k),j|)

(b2
j − b

(n)
(k),j

2
). (6)

When ξ is small, the difference between (5) and (6) should be small. We adopt this algorithm for

computing β̂
(n)

.

Given λn and a, the profile objective function is

Q̃n,ξ(b
(n); λn, a) =

n∑
i=1

(Ỹi − X̃
(n)′
i b(n))2 + n

pn∑
j=1

pλ,ξ(b
(n)
j ; a).
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Let b
(n)
k be the solution at the kth step in the iteration. In the (k + 1)th step, around b

(n)
(k) , we

approximate Q̃n,ξ by

Sk,ξ(b
(n); λn, a) =

n∑
i=1

(Ỹi−X̃
(n)′
i b(n))2+n

pn∑
j=1

pλn,ξ(|b(n)
(k),j|; a)+

np′λ(|b(k),j|+; a)

2(ξ + |b(n)
(k),j|)

(b
(n)
j

2−b
(n)
(k),j

2
).

Therefore the one-step estimator starting at β(k) is

b
(n)
(k+1) = (X̃(n)′X̃(n) + nDξ(b

(n)
(k) ; λn, a))−1X̃(n)′Ỹ,

where Dξ(b
(n)
(k) ; λn, a) is the diagonal matrix whose diagonal elements are 1

2
p′λ(|b(n)

(k),j|+; a)/(ξ +

|b(n)
(k),j|), j = 1, . . . , pn.

Given the tolerance τ , convergence is claimed when
∣∣∣∣∣
∂Q̃n,ξ(b

(n))

∂b
(n)
j

∣∣∣∣∣ <
τ

2
, ∀j = 1, . . . , p.

In the final b(n), the b
(n)
j ’s (1 ≤ j ≤ pn) that satisfy

∣∣∣∣∣
∂Q̃n,ξ(b

(n))

∂b
(n)
j

− ∂Q̃n(b(n))

∂b
(n)
j

∣∣∣∣∣ =
nξp′λ(|βj|; a)

ξ + |βj| >
τ

2

are set to 0. To start, we may take the least square estimator

b
(n)

LS = (X̃(n)′X̃(n))−1X̃(n)′Ỹ

as b
(n)
(0) . The perturbation ξ should be kept small so that the difference between Q̃n,ξ(β̂) and Q̃n(β̂)

is negligible. Hunter and Li (2005) suggested using

ξ =
τ

2nλn

min{|b(n)
(0),j| : b

(n)
(0),j 6= 0}.

Simulation in the next section shows that this algorithm works very well for our problem.

Once we have computed β̂
(n)

, the value of g at some t ∈ [0, 1] is estimated by

ĝn(t) = Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′(Y − X(n)β̂
(n)

).
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4.2. Standard errors. Like all estimators computed with the Newton-Raphson algorithm,

the standard errors for the nonzero coefficient estimates can be derived from the Hessian matrix.

Specifically, by the local linear approximation,

∂Sξ(b
(n)
1 ; λn, a)

∂b
(n)
1

≈ ∂Sξ(β
(n)
1 ; λn, a)

∂β
(n)
1

+
∂2Sξ(β

(n)
1 ; λn, a)

∂β
(n)
1 ∂β

(n)′
1

(b
(n)
1 − β

(n)
1 ),

we have

b
(n)
1 − β

(n)
1 ≈ −(

∂2Sξ(β
(n)
1 ; λn, a)

∂β
(n)
1 ∂β

(n)′
1

)−1∂Sξ(β
(n)
1 ; λn, a)

∂β
(n)
1

≈ −(
∂2Sξ(b

(n)
1 ; λn, a)

∂b
(n)
1 ∂b

(n)′
1

)−1∂Sξ(b
(n)
1 ; λn, a)

∂b
(n)
1

.

Since

∂Sξ(b
(n)
1 ; λn, a)

∂b
(n)
j

= −2X̃(n)′
·j Ỹ + 2X̃(n)′

·j X̃(n)b + n
b
(n)
j p′λn

(|b(n)
j |)

ξ + |b(n)
j |

=
n∑

i=1

[
−2X̃

(n)
ij Ỹi + 2X̃

(n)
ij X̃

(n)′
i1 b

(n)
1 +

b
(n)
j p′λn

(|b(n)
j |)

ξ + |b(n)
j |

]
,

, 2
n∑

i=1

Uij(ξ; λn, a),

it follows that, for j, l = 1, . . . , pn,

Cov(n−1/2∂Sξ(b
(n)
1 ; λn, a)

∂b
(n)
j

, n−1/2∂Sξ(b
(n)
1 ; λn, a)

∂b
(n)
j

) ≈ 4

n

n∑
i=1

UijUil− 4

n2

n∑
i=1

Uij

n∑
i=1

Uil = 4(Cov(U))jl.

Therefore the variance-covariance matrix of the nonzero estimators can be approximated by

̂
Cov(β̂

(n)

1 ) = n(X̃(n)′
1 X̃(n)

1 + nDξ(β̂
(n)

1 ; λn, a))−1Cov(U)(X̃(n)′
1 X̃(n)

1 + nDξ(β̂
(n)

1 ; λn, a))−1.

4.3. Selection of λn. The above computation procedures are for the case when λn and a are

specified. We choose λn by minimizing the generalized cross validation score [Wahba (1990)],

which is defined to be

GCV(λ, a) =
‖Ỹ − X̃1β̂

(n)

1 (λ, a)‖2/n

(1− eff(λ, a)/n)2
,
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where

eff(λ, a) = tr
[
X̃(n)

1

(
X̃(n)′

1 X̃(n)
1 + nDξ(β̂

(n)

1 (λ, a); λ, a)
)−1

X̃(n)′
1

]

is the number of effective parameters and Dξ(β̂
(n)

1 (λ, a); λ, a) is a submatrix of

Dξ(β̂
(n)

(λ, a); λ, a). Likewise, X̃(n)
1 only includes the columns of which the corresponding

elements of β̂
(n)

(λ, a) are non-vanishing.

The requirement that a > 2 is needed in the SCAD penalty function. Simulation studies

indicate that the generalized cross validation score would not change much for a range of values

of a. So for computational efficiency, we fix a = 3.7, as suggested by Fan and Li (2001).

Note that here we use fixed partition ∆n and m in estimating the nonparametric component g.

Data-driven choice of them may be desirable. However, in our simulations, m = 4 (cubic splines)

and Mn ≤ 3 with even partition of [0, 1] serves the purpose well.

5. Simulation study and data example. In this section we illustrate the SCAD-PLM estimator’s

finite sample properties with simulated examples. In both examples, we use m = 4, Mn = 3 and

the sample quantiles of Ti’s as the knots.

Example 1. In this study, we simulate n = 100 points Ti, i = 1, . . . , 100 from the uniform

distribution on [0, 1]. For each i, eij’s are simulated to be normally distributed with autocorrelated

variance structure AR(ρ) such that

Cov(eij, eil) = ρ|j−l|, 1 ≤ j, l ≤ 10,

Xij’s are then formed as follows:

Xi1 = sin(2Ti) + ei1, Xi2 = (0.5 + Ti)
−2 + ei2, Xi3 = exp(Ti) + ei3, Xi5 = (Ti − 0.7)4 + ei5,

Xi6 = Ti(1+T 2
i )−1 + ei6, Xi7 =

√
1 + Ti + ei7, Xi8 = log(3Ti +8)+ ei8, Xij = eij, j = 4, 9, 10.

The response Yi is computed as

Yi =
10∑

j=1

Xijβij + cos(T ) + εi, i = 1, . . . , 100.
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where βj = j, 1 ≤ j ≤ 4, βj = 0, 5 ≤ j ≤ 10, and εi’s are sampled from N(0, 1), and

For each ρ = 0, 0.2, 0.5, 0.8, we generated N = 100 data sets. For comparison we apply the

SCAD penalized regression method, treating Ti as a linear predictor like Xij’s. The corresponding

estimator is abbreviated as LS-SCAD estimator. Also linear regression and partially linear

regression without penalty are applied for comparison. The linear regression with model selection

based on AIC (abbreviated as LS-AIC) is also included in the comparison.

The results are summarized in Table 1 and 2. Columns 3 through 6 in Table 1 are the averages

of the estimates of βj, j = 1, . . . , 4 respectively. Column 7 is the numbers of estimates of βj, 5 ≤
j ≤ 10 that are 0, averaged over 100 simulations, and their medians are given in Column 8.

Column 9 gives the sums of the numbers of estimates of βj, j = 1, . . . , 4 that are 0. The last

column only makes sense for the LS-SCAD and LS-AIC estimators. It gives the percentage of

times in the 100 simulations in which the coefficient estimate of T equals 0.

In this simulation model, the nonparametric part g(T ) = cos(T ) can be fairly well

approximated by a linear function on [0, 1]. As a result, the LS-SCAD estimator is expected to give

good estimates. It is shown in Table 1 that the estimates of βj, 1 ≤ j ≤ 4 are all very close to the

underlying values. The SCAD-penalized counterparts are comparable to the traditional estimators.

Neither the linear regression method nor the partially linear regression does any variable selection.

LS-SCAD and PLM-SCAD pick out the covariates with zero coefficients efficiently. LS-AIC has

similar performance to the LS-SCAD estimator. On average each time 83% of the covariates with

zero coefficients are selected and none of the covariates with nonzero coefficients are incorrectly

chosen as trivial in the 100 simulations. However, in each setting, about 2/3 of the time, the

LS-SCAD method attributes no effect to T , which does have a nonlinear effect on Y . This is due

to the relatively small variation caused in g(T ) (with a range less than 0.5) compared with the

random variation.
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Table 2 summarizes the performance of the sandwich estimator of the standard error of the

PLM-SCAD estimator. Columns 2, 4, 6 and 8 are the standard errors of βj, 1 ≤ j ≤ 4 in the 100

simulations, respectively, while Columns 3, 5, 7 and 9 are the average of the standard deviation

estimates of these coefficients, obtains via the Hessian matrices. It is seen that the sandwich

estimator of the standard error works well, although it slightly underestimates the sampling

variation.

Example 2. This study is similar to Example 1 except that the responses are simulated from

Yi =
10∑

j=1

Xijβj + cos(2πTi) + εi.

So here g(T ) = cos(2πT ). In Example 1, g(T ) = cos(T ). This change in g(T ) makes it difficult

to have a linear approximation of g(T ) on [0, 1]. So the LS-SCAD estimator is expected to fail in

this situation. Besides, the variation in g(·) (with a range of 2) is relatively large compared to the

variation in the error term. Thus misspecification of g(T ) will cause bias in the estimation of the

linear part. This is reflected in Table 3. The LS-SCAD estimates of the nonzero coefficients are

clearly biased and the biases become larger as the correlation between covariates increases. It can

be seen in Column 9, when ρ = 0.8, the nonzero covariates are even estimated to be trivial, which

is not seen when the model is not misspecified.

6. Discussion. In this paper, we studied the SCAD-penalized method for variable selection and

estimation in the PLM with a divergent number of covariates. B-spline basis functions are used for

fitting the nonparametric part. Variable selection and coefficient estimation in the parametric part

are achieved simultaneously. The oracle property of the SCAD-PLM estimator of the parametric

part was established and consistency of the SCAD-PLM estimator of the nonparametric part
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was shown. Compared to the classical variable selection methods such as subset selection, the

SCAD has two advantages. First, the variable selection with SCAD is continuous and hence more

stable than the subset selection, which is a discrete and non-continuous. Second, the SCAD is

computationally feasible for high-dimensional data. In contrast, computation in subset selection

is combinatorial and not feasible when p is large.

We have focused on the case where there is one variable in the nonparametric part.

Nonetheless, this may be extended to the case of d covariates T1, . . . , Td. Specifically, consider

the model

Y = X(n)′β(n) + g(T1, . . . , Td) + ε. (7)

The SCAD-PLM estimator (β̂
(n)

, ĝn) can be obtained via

min
(b(n)∈Rpn ,φ∈S)

{
n∑

i=1

(Yi −X
(n)′
i b(n) − φ)2 + n

pn∑
j=1

pλn(b
(n)
j ; a)}.

Here S is the space of all the d-variate functions on [0, 1]d that meet some requirement of

smoothness. In particular, we can take S to be the space of the products of the B-spline basis

functions, then projectX(n) and Y onto this space with this basis and perform the SCAD-penalized

regression to Ỹ on X̃(n). This has already been discussed in Friedman (1991). However, for large

d and moderate sample size, even with very small Mn, this model may suffer from the “curse of

dimensionality.”

A more parsimonious extension is the partially linear additive model (PLAM)

Y = µ + X(n)′β(n) +
d∑

l=1

gl(Tl) + ε, (8)

where E[gl(Tl)] = 0 holds for l = 1, . . . , d. To estimate β and gl, for each Tl, we first determine

the partition ∆nl. For simplicity, we assume that the numbers of knots are Mn and the mesh

sizes are O(M−1
n ) for all l. Suppose that X and Y are centered. The SCAD-PLAM estimator

(β̂
(n)

, ĝn1, . . . , ĝn1) is then defined to be the minimizer of
n∑

i=1

[Yi −X
(n)′
i b(n) −

d∑

l=1

φl(Til)]
2 + n

pn∑
j=1

pλn(b
(n)
j ; a)},
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subject to

(i)
∑n

i=1 φl(Til) = 0,

(ii) φl is an element of Sm(∆nl).

Under the assumptions similar to those for the SCAD-PLM estimator, β̂
(n)

can be shown to

possess the oracle property. Furthermore, if the joint distribution of (T1, . . . , Td) is absolutely

continuous and its density is bounded away from 0 and infinity on [0, 1]d, following the proof of

Lemma 7 in Stone (1985) and that of Theorem 4 here, we can obtain the same global consistency

rate for each additive component, i.e.

‖ĝnl − gl‖Tl
= OP (kn/

√
n +

√
Mn/n +

√
knM

−sg
n ), l = 1, . . . , d.

One way to compute the SCAD-PLAM estimator is the following. First, form the B-spline basis

{Bnw, 1 ≤ w ≤ qn} as follows: the first Mn + m− 1 components are the B-spline basis functions

corresponding to T1 ignoring the intercept, the second Mn + m − 1 components corresponding

to T2, and so on. The intercept is the last component. So here qn = dMn + dm − d + 1. Now

computation can proceed in a similar way to that for the SCAD-PLM estimator.

Our results require that pn < n. While this condition is often satisfied in applications, there are

important settings in which it is violated. For example, in studies with microarray data as covariate

measurements, the number of genes (covariates) is typically greater than the sample size. Without

any further assumptions on the structure of covariate matrix, the regression parameter is in general

not identifiable if pn > n. It is an interesting topic of future research to identify conditions under

which the SCAD-PLM estimator achieves consistent variable selection and asymptotic normality

even when pn > n.
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Appendix. We now give the proofs of the results stated in Section 3. Write

X(n) = (Xij) i=1,...,n
j=1,...,pn

= (θ
(n)
j (Ti)) i=1,...,n

j=1,...,pn

+ (e
(n)
ij ) i=1,...,n

j=1,...,pn

, θ(n)(T) + En.

Lemma 1. Under (A1),

‖X(n)′(I − P
(n)
Z )X(n)/n− Ξ(n)‖ P−→ 0.

Proof. (Lemma 1) For simplicity, write

A(n) = X(n)′(I − P
(n)
Z )X(n)/n, C(n) = A(n) − Ξ(n).

Note that X(n)
·j = e

(n)
·j + θnj(T), where e

(n)
·j = (e

(n)
1j , . . . , e

(n)
nj )′.

|C(n)
jl | = |(e

(n)′
·j e

(n)
·l

n
− Ξ

(n)
jl ) +

e
(n)′
·j P

(n)
Z e

(n)
·l

n
+

e
(n)′
·j (I − P

(n)
Z )θ

(n)
l (T)

n

+
e

(n)′
·l (I − P

(n)
Z )θ

(n)
j (T)

n
+

θ
(n)
j (T)′(I − P

(n)
Z )θ

(n)
l (T)

n
|
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By Condition 2,

E
[
n−1e

(n)′
·j e

(n)
·l − Ξ

(n)
jl

]2

= n−1Var(e(n)
j e

(n)
l ) ≤ n−1σ4e.

Since

E
[
n−1e

(n)′
·j P

(n)
Z e

(n)
·j

]2

= n−2E
{

E[(e
(n)′
·j P

(n)
Z e

(n)
·j )2|Z(n)]

}

= n−2E

{
n∑

i=1

n∑

i′=1

n∑
ι=1

n∑

ι′=1

Pii′Pιι′E
[
e
(n)
ij e

(n)
i′j e

(n)
ιj e

(n)
ι′j |Z(n)

]}
,

and

Pii′Pιι′E
[
e
(n)
ij e

(n)
i′j e

(n)
ιj e

(n)
ι′j |Z(n)

]
=





PiiPιιΣ
(n)
jj (Ti)Σ

(n)
jj (Tι), i = i′ 6= ι = ι′,

P 2
ii′Σ

(n)
jj (Ti)Σ

(n)
jj (Ti′), i = ι 6= i′ = ι′,

P 2
ii′Σ

(n)
jj (Ti)Σ

(n)
jj (Ti′), i = ι′ 6= i′ = ι,

P 2
iiE[e

(n)
ij

4|Ti], i = i′ = ι = ι′,

0, otherwise,

together with Σ
(n)
jj (Ti) ≤ σ

1/2
4e and P

(n)
Z,ii ≤ 1, we have

E
[
n−1e

(n)′
·j P

(n)
Z e

(n)
·j

]2

≤ n−2σ4e

{
E[tr2(P (n)

Z )] + 2E[tr(P (n)
Z

2
)]
}

+ n−2σ4eE[tr(P (n)
Z )]

≤ n−2σ4e(q
2
n + 3qn).

By Corollary 6.21 in Schumaker (1981) and the properties of least square regression,

E[n−1θ
(n)
j (T)(I − P

(n)
Z )θ

(n)
j (T)] ≤ C1Mθ(∆n)2sθ ,

where C1 is a constant determined only by rθ. By the Cauchy-Schwarz inequality and Cr

inequality we have

‖C(n)‖2 = OP (p2
n/n + p2

nM
2
n/n2 + p2

nM
−2sθ
n ).

The convergence follows from (A1).

Lemma 2. E[tr(X(n)′(I − PZ)X(n))] = O(npn).

24



Proof.

E[tr(X(n)′(I − PZ)X(n))]

= E
[
tr([E(n) + θ(n)(T)]′(I − PZ)[E(n) + θ(n)(T)])

]

= E
[
tr(E(n)′(I − PZ)E(n) + 2E(n)′(I − PZ)θ(n)(T) + θ(n)(T)′(I − PZ)θ(n)(T))

]

= E
{

E
[
tr(E(n)′(I − PZ)E(n) + 2E(n)′(I − PZ)θ(n)(T) + θ(n)(T)′(I − PZ)θ(n)(T))|T

]}

= E
{
E

[
tr(E(n)′(I − PZ)E(n))|T]}

+ E
[
tr(θ(n)(T)′(I − PZ)θ(n)(T))

]

≤ E
{
E

[
tr(E(n)′(I − PZ)E(n))|T]}

+ C1npnMθM
−2sθ
n

= E

{
E

[
pn∑

j=1

e
(n)′
·j (I − PZ)e

(n)
·j |T

]}
+ C1npnMθM

−2sθ
n

= E[

pn∑
j=1

tr((I − PZ)Σ
(n)
jj (T))] + C1npnMθM

−2sθ
n

≤ npnσ
1/2
4e + C1npnMθM

−2sθ
n . (tr(AB) ≤ λmax(B)tr(A))

Here Σ
(n)
jj (T)) = diag(Σ

(n)
jj (T1), . . . , Σ

(n)
jj (Tn)).

Proof of Theorem 1

Proof. Let ε = (ε1, . . . , εn)′ and g(T) = (g(T1), . . . , g(Tn))′. Since β̂
(n)

minimizes Qn(b(n)), it

necessarily holds that

Qn(β̂
(n)

) ≤ Qn(β(n)).

Rewriting this inequality, we have

‖(I − P
(n)
Z )X(n)(β̂

(n) − β(n))‖2 − 2(ε + g(T))′(I − P
(n)
Z )X(n)(β̂

(n) − β(n)) ≤ nkn

2
(a + 1)λ2

n.

Let

δn = n−1/2
[
X(n)′(I − P

(n)
Z )X(n)

]1/2

(β̂
(n) − β(n)),

and

ωn = n−1/2
[
X(n)′(I − P

(n)
Z )X(n)

]−1/2

X(n)′(I − P
(n)
Z )(ε + g(T)).
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Then

‖δn‖2 − 2ω′
nδn ≤ kn

2
(a + 1)λ2

n.

i.e.

‖δn − ωn‖2 ≤ ‖ωn‖2 +
kn

2
(a + 1)λ2

n.

By the Cr inequality,

‖δn‖2 ≤ 2
(‖δn − ωn‖2 + ‖ωn‖2

)

≤ 4‖ωn‖2 + kn(a + 1)λ2
n.

Examine

‖ωn‖2 = n−1(ε + g(T))′(I − P
(n)
Z )X(n)

[
X(n)′(I − P

(n)
Z )X(n)

]−1

X(n)′(I − P
(n)
Z )(ε + g(T))

, In1 + In2 + In3,

where

In1 = n−1ε′(I − P
(n)
Z )X(n)

[
X(n)′(I − P

(n)
Z )X(n)

]−1

X(n)′(I − P
(n)
Z )ε,

In2 = 2n−1ε′(I − P
(n)
Z )X(n)

[
X(n)′(I − P

(n)
Z )X(n)

]−1

X(n)′(I − P
(n)
Z )g(T),

In3 = n−1g(T)′(I − P
(n)
Z )X(n)

[
X(n)′(I − P

(n)
Z )X(n)

]−1

X(n)′(I − P
(n)
Z )g(T).

Obviously,

In1 = E[E(In1|X(n),T)]OP (1) = pnn−1OP (1).

By the property of projection matrices,

In3 ≤ n−1g(T)′(I − P
(n)
Z )g(T) = M−2sg

n O(1).

Thus ‖ωn‖2 = OP (pn/n + M
−2sg
n ). Furthermore,

‖β̂(n) − β(n)‖2 = OP (pn/n + M−2sg
n + knλ2

n)

follows from Lemma 1 with (A2). Thus (A3) immediately leads to the consistency.
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Lemma 3. (Rate of convergence) Suppose (A1)–(A4) hold. Then

‖β̂(n) − β(n)‖ = OP (
√

pn/n +
√

pn/M sg
n ).

Proof. Let un =
√

pn/n + M
−sg
n +

√
kn λn. When un = o(min1≤j≤kn |β(n)

j |), with probability

tending to 1, min1≤j≤kn |β̂(n)
j | > aλn.

Given a sequence {hn : hn > 0} that converges to 0, partitionRpn\{0pn} into shells {Sn,l, l =

0, 1, . . .} where Sn,l = {b(n) : 2l−1hn ≤ ‖b(n) − β(n)‖ < 2lhn}. Then

P
(
‖β̂(n)

n − β(n)‖ ≥ 2Lhn

)
≤ o(1) +

∑
l>L

2lhn≤2L1un

P
(
β̂

(n)

n ∈ Sn,l, ‖C(n)‖ ≤ c/2
)

≤ o(1) +
∑
l>L

2lhn≤2L1un

P

(
inf

b(n)∈Sn,l

Qn(b(n)) ≤ Qn(β(n)), ‖C(n)‖ ≤ cλ/2

)

≤ o(1) +
∑

l>L

P

(
sup

b(n)∈Sn,l

2(ε + g(T))′(I − PZ)X(n)(b(n) − β(n)) ≥

inf
b(n)∈Sn,l

(b(n) − β(n))′X(n)′(I − PZ)X(n)(b(n) − β(n)), ‖C(n)‖ ≤ cλ/2
)

≤
∑

l>L

P

(
sup

b(n)∈Sn,l

(ε + g(T))′(I − PZ)X(n)(b(n) − β(n)) ≥ 22l−4ncλh
2
n

)

+o(1).

Since

E sup
b(n)∈Sn,l

|(ε + g(T))′(I − PZ)X(n)(b(n) − β(n))|

≤ 2lhn

√
E[(ε + g(T))′(I − PZ)X(n)X(n)′(I − PZ)(ε + g(T))]

≤ 2l+1/2hn

√
E[ε′(I − PZ)X(n)X(n)′(I − PZ)ε] + E[g(T)′(I − PZ)X(n)X(n)′(I − PZ)g(T)]

≤ 2l+1/2hn

√
C3npn + E[g(T)′(I − PZ)g(T)tr(X(n)X(n)′(I − PZ))]

≤ 2lhnC4

(√
npn + n

√
pnM

−sg
n

)
.

Continuing the previous arguments, by the Markov inequality,

P
(
‖β̂(n)

n − β(n)‖ ≥ 2Lhn

)
≤ o(1) +

∑

l>L

C5(
√

pn +
√

npnM
−sg
n )

2l−4hn

√
n

.
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This suggests that ‖β̂(n) − β(n)‖ = OP (
√

pn/n +
√

pn/M
sg
n ).

Proof of Theorem 2

Proof. Consider the partial derivatives of Qn(β(n) + v(n)). We assume ‖v(n)‖ = OP (
√

pn/n +

√
pnM

−sg
n ). Suppose the support sets of e

(n)
j are all contained in a compact set [−Ce, Ce]. For

j = kn + 1, . . . , pn, if ‖v(n)‖ ≤ λn,

∂ Qn(β(n) + v(n))

∂ v
(n)
j

= 2X(n)′
·j (I − PZ)X(n)v(n) + 2X(n)′

·j (I − PZ)(ε + g(T)) + nλnsgn(v
(n)
j )

, IIn1,j + IIn2,j + IIn3,j.

max
kn+1≤j≤pn

|IIn1,j| = 2|X(n)′
·j (I − PZ)X(n)v(n)|

≤ 2‖v(n)‖ max
kn+1≤j≤pn

∥∥∥X(n)′
·j (I − PZ)X(n)

∥∥∥

≤ (
√

pn/n +
√

pnM
−sg
n )OP (1) max

kn+1≤j≤pn

‖(I − PZ)X(n)
·j ‖λ1/2

max(X(n)′(I − PZ)X(n))

= (
√

pnn + n
√

pnM
−sg
n )OP (1)

√
λmax(Ξ(n)) + oP (1)

=

√
pn(n + n2M

−2sg
n )λmax(Ξ(n))OP (1).

So this term is dominated by 1
2
IIn3,j as long as

lim

√
nλn√

pnλmax(Ξ(n))
= ∞ and lim

λnM
sg
n√

pnλmax(Ξ(n))
= ∞,

both of which are stated in (A5). To sift out all the trivial components, we need

P ( max
kn+1≤j≤pn

|IIn2,j| > nλn/2) → 0.
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This is also implied by (A5), as can be seen from

P ( max
kn+1≤j≤pn

|IIn2,j| > nλn/2)

≤ 2E[maxkn+1≤j≤pn |IIn2,j|]
nλn

≤
2
√∑pn

j=kn+1 E[II2
n2,j]

nλn

≤
2
√

2
√∑pn

j=kn+1{E[ε′(I − PZ)X(n)
j X

(n)′
j (I − PZ)ε] + E[g(T)′(I − PZ)X(n)

j X
(n)′
j (I − PZ)g(T)]}

nλn

≤ C1

√
nmn + nM

−2sg
n nmn

nλn

.

This completes the proof.

Proof of Theorem 3

Proof. Let An be any ι × kn matrix with full row rank and Σn = AnA
′
n. From the variable

selection conclusion, with probability tending to 1, we have

β̂
(n)

1 − β
(n)
1 =

[
X(n)′

1 (I − PZ)X(n)
1

]−1

X(n)′
1 (I − PZ)(g(T) + ε).

We consider the limit distribution of

Vn = n−1/2Σ−1/2
n AnΞ

(n)
11

−1/2
[
X(n)′

1 (I − PZ)X(n)
1

]
(β̂

(n)

1 − β
(n)
1 )

= n−1/2Σ−1/2
n AnΞ

(n)
11

−1/2
X(n)′

1 (I − PZ)(g(T) + ε)

, In1 + In2,

where

In1 = n−1/2Σ−1/2
n AnΞ

(n)
11

−1/2
X(n)′

1 (I − PZ)g(T),

In2 = n−1/2Σ−1/2
n AnΞ

(n)
11

−1/2
X(n)′

1 (I − PZ)ε.

29



Note that the conclusion of Theorem 3 is equivalent to

Vn
d→ N(0ι, σ

2Iι).

The first term is a oP (1) term under (A6) and (A7), as shown in

In1 = n−1/2Σ−1/2
n AnΞ

(n)
11

−1/2
E(n)′

1 (I − PZ)g(T) + n−1/2Σ−1/2
n AnΞ

(n)
11

−1/2
θ

(n)′
1 (T)(I − PZ)g(T),

= IIn1 + IIn2,

where

‖IIn1‖2 = E‖IIn1‖2OP (1)

= n−1E
[
g(T)′(I − PZ)E(n)

1 Ξ
(n)
11

−1/2
A′

nΣ−1
n AnΞ

(n)
11

−1/2
E(n)′

1 (I − PZ)g(T)
]
OP (1)

= n−1E
{

g(T)′(I − PZ)E
[
E(n)

1 Ξ
(n)
11

−1/2
A′

nΣ−1
n AnΞ

(n)
11

−1/2
E(n)′

1 |T
]
(I − PZ)g(T)

}
OP (1)

≤ n−1E
{

g(T)′(I − PZ)E
[
E(n)

1 Ξ
(n)
11

−1
E(n)′

1 |T
]
(I − PZ)g(T)

}
OP (1)

= n−1E
{

g(T)′(I − PZ)Diag
(

tr(Ξ(n)
11

−1
Σ

(n)
11 (T1)), . . . , tr(Ξ(n)

11

−1
Σ

(n)
11 (Tn))

)
(I − PZ)g(T)

}
OP (1)

≤ n−1‖(I − PZ)g(T)‖2tr
(
Σ

(n)
u,11

)

= tr
(
Σ

(n)
u,11

)
M−2sg

n OP (1) = oP (1),

and

‖IIn2‖2 ≤ n−1‖(I − PZ)g(T)‖2λmax

(
(I − PZ)θ

(n)
1 (T)Ξ

(n)
11

−1
(I − PZ)θ

(n)′
1

)

≤ n−1‖(I − PZ)g(T)‖2‖(I − PZ)θ
(n)
1 ‖2

= n−1nM−2sg
n nM−2sθ

n O(1)

= nM−2(sg+sθ)
n O(1).

Decompose the second term In2 as

In2 = n−1/2Σ−1/2
n AnΞ

(n)
11

−1/2
E(n)′

1 ε− n−1/2Σ−1/2
n AnΞ

(n)
11

−1/2
E(n)′

1 PZε

+n−1/2Σ−1/2
n AnΞ

(n)
11

−1/2
θ

(n)′
1 (T)(I − PZ)ε,

= IIIn1 + IIIn2 + IIIn3.
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Actually, the last two terms above are trivial:

‖IIIn2‖2 = n−1OP (1)E[tr(PZE(n)
1 Ξ

(n)
11

−1/2
A′

nΣ−1
n AnΞ

(n)
11

−1/2
E(n)′

1 PZ)]

≤ n−1OP (1)E[tr(PZE(n)
1 Ξ

(n)
11

−1
E(n)′

1 PZ)]

= n−1OP (1)E[tr(PZE(n)
1 E

(n)′
1 )]

≤ n−1OP (1)tr(Σ(n)
u,11)E[tr (PZ)]

= tr(Σ(n)
u,11)Mn/nOP (1) = oP (1).

‖IIIn3‖2 = n−1OP (1)E
[
tr

(
(I − PZ)θ

(n)
1 (T)Ξ

(n)
11

−1
θ

(n)′
1 (T)(I − PZ)

)]

= knM−2sθ
n OP (1) = oP (1).

So we focus on IIIn1 = n−1/2Σ
−1/2
n AnΞ

(n)
11

−1/2
E(n)′

1 ε. Since

Var(IIIn1) = E[Var(IIIn1|X(n),T)] = σ2Iι,

by the central limit theorem we have

IIIn1
d→ N(0ι, σ

2Iι).

The conclusion follows from the Slutsky’s theorem.

Lemma 4. Sequences of random variables An and random vectors Bn satisfy E[A2
n|Bn] =

OP (u2
n), where {un} is a sequence of positive numbers. Then

An = OP (un).

Proof. For any ε > 0, there is some M1 such that

P (E[A2
n|Bn] > M1u

2
n) < ε/2.
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Let M2
2 = 2M1/ε. Then

P (|An| > M2un) ≤ P (|An| > M2un, E[A2
n|Bn] ≤ M1u

2
n) + P (E[A2

n|Bn] > M1u
2
n)

< E[1(|An|>M2un)1(E[A2
n|Bn]≤M1u2

n)] + ε/2

= E{1(E[A2
n|Bn]≤M1u2

n)E[1(|An|>M2un)|Bn]}+ ε/2

≤ E

[
1(E[A2

n|Bn]≤M1u2
n)

E[A2
n|Bn]

M2
2 u2

n

]
+ ε/2

≤ ε.

The arbitrariness of ε implies the conclusion.

Proof of Theorem 4

Proof. The nonparametric component g() at a point t ∈ [0, 1] is estimated with

ĝn(t) = Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′(Y − X(n)β̂
(n)

).

With probability tending to 1,

ĝn(t)− g(t) = Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′(Y − X(n)
1 β̂

(n)

1 )− g(t)

= Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′(Y − X(n)
1 β

(n)
1 )− g(t)

−Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′X(n)
1 (β̂

(n)

1 − β
(n)
1 )

= Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′g(T)− g(t)

+Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′ε

−Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′θ(n)
1 (T)(β̂

(n)

1 − β
(n)
1 )

−Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′E(n)
1 (β̂

(n)

1 − β
(n)
1 )

, In1 + In2 + In3 + In4.

Consider ‖ĝn − g‖2
T =

∫
[ĝn(t) − g(t)]2fT (t)dt. Without further assumptions, by Lemma 9 in

Stone (1985),

‖In1‖2
T = OP (M−2sg

n ).
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When Mn = o(
√

n), by Lemma 4 in Stone (1985),

E[‖In2‖2
T |T] = OP (Mn/n).

Therefore

‖In2‖2
T = OP (Mn/n).

When {θ(n)
j (·), n ≥ 1, 1 ≤ j ≤ kn} are uniformly bounded on [0, 1],

‖In3‖2
T ≤ ‖Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′θ(n)

1 (T)‖2
T ‖β̂

(n)

1 − β
(n)
1 ‖2

≤ [O(kn) + OP (knM
−2sθ
n )] [OP (1)M−2sg

n + kn/nOP (1)]

= OP (1)
(
knM−2sg

n + k2
nn−1

)
.

Similarly,

‖In4‖2
T ≤ ‖Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′E(n)

1 ‖2
T ‖β̂

(n)

1 − β
(n)
1 ‖2

= ‖β̂(n)

1 − β
(n)
1 ‖2 ‖Z(t; ∆n)′(Z(n)′Z(n))−1Z(n)′E(n)

1 ‖2
T

≤ OP (knMn/n)[OP (1)M−2sg
n + kn/nOP (1)]

= OP (1)
(
M1−2sg

n kn/n + Mnk2
n/n2

)
.

To sum up, when kn = o(
√

n), we have

‖ĝn − g‖2
T = OP (k2

n/n + Mn/n + knM−2sg
n ).
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Table 1: Simulation 1, comparison of estimators

Estimator ρ β1 β2 β3 β4 K K̃
∑

IK %(ĝ(T ) = 0)

LS 0 0.9969 1.9932 2.9959 4.0084 0 0 0 0

0.2 1.0212 1.9845 3.0084 3.9824 0 0 0 0

0.5 1.0186 1.9748 3.0022 4.0098 0 0 0 0

0.8 1.0252 1.9786 2.9961 4.0120 0 0 0 0

LS-AIC 0 0.9806 1.9948 2.9928 4.0161 4.71 5 0 57%

0.2 1.0065 2.0099 2.9834 4.0107 4.78 5 0 56%

0.5 1.0139 2.0016 2.9654 4.0195 4.84 5 0 74%

0.8 1.0071 2.0181 2.9732 3.9989 4.95 5 0 78%

PLM 0 0.9903 1.9981 3.0038 3.9768 0 0 0 0

0.2 0.9960 1.9857 3.0056 3.9983 0 0 0 0

0.5 0.9790 2.0147 2.9858 4.0156 0 0 0 0

0.8 1.0100 1.9726 3.0363 3.9772 0 0 0 0

LS-SCAD 0 0.9843 2.0135 2.9857 3.9889 4.60 5 0 61%

0.2 0.9896 2.0250 2.9658 3.9926 4.53 5 0 75%

0.5 0.9971 2.0175 2.9512 4.0149 4.75 5 0 73%

0.8 1.0113 1.9907 3.0031 4.0018 4.64 5 0 64%

PLM-SCAD 0 0.9938 2.0000 3.0018 4.0050 4.41 5 0 0

0.2 0.9723 2.0101 3.0083 4.0052 4.47 5 0 0

0.5 0.9854 1.9822 3.0228 4.0095 4.72 5 0 0

0.8 0.9934 1.9961 3.0090 3.9948 4.87 5 0 0

Table 2: Simulation 1, standard error estimate

ρ se(β1) ŝe(β1) se(β2) ŝe(β2) se(β3) ŝe(β3) se(β4) ŝe(β4)

0 0.1059 0.0969 0.1015 0.0983 0.1155 0.0978 0.1123 0.0978

0.2 0.1273 0.1002 0.1080 0.1036 0.0977 0.1014 0.1122 0.1028

0.5 0.1291 0.1131 0.1426 0.1268 0.1271 0.1266 0.1395 0.1153

0.8 0.1855 0.1613 0.2455 0.2104 0.2157 0.2150 0.1999 0.1767
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Table 3: Simulation 2, comparison of estimators

Estimator ρ β1 β2 β3 β4 K K̃
∑

IK %(ĝ(T ) = 0)

LS 0 0.9032 2.1906 3.0205 4.0005 0 0 0 0

0.2 0.8771 2.2009 2.9758 3.9851 0 0 0 0

0.5 0.8113 2.2996 2.9471 3.9511 0 0 0 0

0.8 0.5723 2.6451 2.7889 3.9200 0 0 0 0

LS-AIC 0 0.9230 2.1822 3.0578 4.0286 4.96 5 0 69%

0.2 0.8908 2.1733 3.0175 3.9969 4.82 5 0 66%

0.5 0.8130 2.3084 2.9525 3.9734 4.85 5 0 38%

0.8 0.5742 2.5791 2.9127 3.8749 4.94 5 2 17%

PLM 0 0.9922 1.9965 3.0259 3.9898 0 0 0 0

0.2 0.9903 1.9927 3.0047 4.0036 0 0 0 0

0.5 0.9999 1.9917 2.9977 4.0101 0 0 0 0

0.8 0.9684 2.0355 2.9970 4.0008 0 0 0 0

LS-SCAD 0 0.9403 2.1625 3.0763 4.0157 4.61 5 0 65%

0.2 0.9003 2.1621 3.0295 3.9772 4.41 5 0 60%

0.5 0.8112 2.2540 2.9974 3.9741 4.88 5 0 42%

0.8 0.5480 2.6442 2.8314 3.9459 4.94 5 2 12%

PLM-SCAD 0 0.9780 1.9996 2.9895 4.0117 4.74 5 0 0

0.2 1.0021 2.0049 3.0129 4.0003 4.44 5 0 0

0.5 0.9899 2.0130 3.0046 4.0012 4.73 5 0 0

0.8 1.0023 1.9870 2.9852 4.0297 4.63 5 0 0
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